Reconstruction and Convergence in Quantum K-Theory via Difference Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Difference Quantum Toda Lattice via Equivariant K-theory

We construct the action of the quantum group Uv(sln) by the natural correspondences in the equivariant localized K-theory of the Laumon based Quasiflags’ moduli spaces. The resulting module is the universal Verma module. We construct geometrically the Shapovalov scalar product and the Whittaker vectors. It follows that a certain generating function of the characters of the global sections of th...

متن کامل

Explicit Reconstruction in Quantum Cohomology and K-theory

Cohomological genus-0 Gromov-Witten invariants of a given target space can be encoded by the “descendant potential,” a generating function defined on the space of power series in one variable with coefficients in the cohomology space of the target. Replacing the coefficient space with the subspace multiplicatively generated by degree-2 classes, we explicitly reconstruct the graph of the differe...

متن کامل

Permutation-equivariant Quantum K-theory Viii. Explicit Reconstruction

In Part VII, we proved that the range LX of the big J-function in permutation-equivariant genus-0 quantum K-theory is an overruled cone, and gave its adelic characterization. Here we show that the ruling spaces are Dq-modules in Novikov’s variables, and moreover, that the whole cone LX is invariant under a large group of symmetries of LX defined in terms of q-difference operators. We employ thi...

متن کامل

Generating potentials via difference equations

The condition for pressure isotropy, for spherically symmetric gravitational fields with charged and uncharged matter, is reduced to a recurrence equation with variable, rational coefficients. This difference equation is solved in general using mathematical induction leading to an exact solution to the Einstein field equations which extends the isotropic model of John and Maharaj. The metric fu...

متن کامل

Reconstruction of Quantum Theory

What belongs to quantum theory is no more than what is needed for its derivation. Keeping to this maxim, we record a paradigmatic shift in the foundations of quantum mechanics, where the focus has recently moved from interpreting to reconstructing quantum theory. Several historic and contemporary reconstructions are analyzed, including the work of Hardy, Rovelli, and Clifton, Bub and Halvorson....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2014

ISSN: 1687-0247,1073-7928

DOI: 10.1093/imrn/rnu026